Answers

(1) 50000 (fifty thousand)

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Let us learn to solve this question using the international place value chart as below:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TM M HTH TTH TH H T O</td>
</tr>
<tr>
<td></td>
<td>8 2 5 4 7 4 6</td>
</tr>
</tbody>
</table>

Legend:

In the above chart, we observe that 5 is placed in Ten Thousands. We can express the same as 50000 or fifty thousand.

Step 2
Thus, the answer is **50000 (fifty thousand)**.

(2) 800000

<table>
<thead>
<tr>
<th>Step 1</th>
<th>This is how the place value chart for the given number looks like:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HTH TTH TH H T U</td>
</tr>
<tr>
<td></td>
<td>8 9 6 7 2 9</td>
</tr>
</tbody>
</table>

Legend:

Step 2
We can see that the marked digit 8 is at one hundred thousand, or 100000th place.

Step 3
Hence, the place value of 8 will be **800000**.
(3) 10200000

Step 1
We have to round off to nearest one hundred thousand. Let us observe the number formed by the last 6 digits, which is 205460.

Step 2
Since the last 6 digits are 205460, rounding off to one hundred thousand will give us 200000.

Step 3
Hence, the number formed by rounding off the number to nearest one hundred thousand, gives us 10200000.

(4) 780000000

Step 1
We know that there are seven zeros in one crore. So, let us look at the 7th digit (from right) of the given number.

Step 2
The 7th digit of the number is 9, which is greater than 5. Hence, after rounding off, the number becomes 780000000.

(5) 40912733

Step 1
The successor of any number is the number next to it (or one more to it).

Step 2
The number next to 40912732 = 40912732 + 1 = 40912733.

(6) eighty-nine crore ninety-five lakh sixty-eight thousand two hundred thirty-five

Step 1
Let us write the place values of all the digits according to the Indian Number System:

<table>
<thead>
<tr>
<th>TC</th>
<th>C</th>
<th>TL</th>
<th>TTh</th>
<th>Th</th>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2
Hence, the number name according to the indian number system is **eighty-nine crore ninety-five lakh sixty-eight thousand two hundred thirty-five**.
Step 1
We have been given the expanded form of a number. In order to find the number, we will add the
given place values of all digits.

Step 2
Performing the desired addition, we get the number as 9776864.

Step 1
Following is the largest number formed by the given seven digits.

Step 2
For this number to be as large as possible, its first digit should be the largest, second digit should
be second largest, third digit should be the third largest and so on. The largest digit among the
given digits is 9, and then it descends as:
9844200

Step 3
We can therefore see that the largest number that can be formed out of the given digits is
9844200.

Step 1
Let us write the place values of all the digits according to the international Number
system:

<table>
<thead>
<tr>
<th>TM</th>
<th>MM</th>
<th>HTh</th>
<th>TTh</th>
<th>Th</th>
<th>H</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Step 2
Hence, the number name according to the International Number System is seventeen
million three hundred eight thousand five hundred six.
B) sixty-eight million seven hundred eighty thousand sixty-three

Step 1
Let us write the place values of all the digits according to the international Number system:

\[
\begin{array}{cccccc}
\text{T} & \text{M} & \text{H} & \text{T} & \text{H} & \text{T} \\
6 & 8 & 7 & 8 & 0 & 63
\end{array}
\]

Step 2
Hence, the number name according to the International Number System is **sixty-eight million seven hundred eighty thousand sixty-three**.

C) fifty-six million nine hundred sixty-five thousand six hundred ninety-four

Step 1
Let us write the place values of all the digits according to the international Number system:

\[
\begin{array}{cccccc}
\text{T} & \text{M} & \text{H} & \text{T} & \text{H} & \text{T} \\
5 & 6 & 9 & 6 & 5 & 94
\end{array}
\]

Step 2
Hence, the number name according to the International Number System is **fifty-six million nine hundred sixty-five thousand six hundred ninety-four**.

D) sixty-three million three hundred eighty-five thousand nine hundred forty-six

Step 1
Let us write the place values of all the digits according to the international Number system:

\[
\begin{array}{cccccc}
\text{T} & \text{M} & \text{H} & \text{T} & \text{H} & \text{T} \\
6 & 3 & 3 & 8 & 5 & 946
\end{array}
\]

Step 2
Hence, the number name according to the International Number System is **sixty-three million three hundred eighty-five thousand nine hundred forty-six**.

(11) d. 55700102
Step 1
Firstly, let us count the number of digits in the given whole number 90000.

Step 2
If we begin to count the digits, starting from the left, we find that there are, a total of, 4 zeros appearing after the digit 9.

Step 3
Hence, there could be 90000 5-digit whole numbers in the number system. Before we can conclusively say so, we will need to verify it.

Step 4
In order to prove that there are 90000 5-digit whole numbers in the number system, let us subtract the smallest 5-digit number from the largest 5-digit number and add 1 to the calculated difference.

\[(99999 - 10000) + 1\]
\[= 89999 + 1\]
\[= 90000\]

Step 5
Hence, we find that there are 90000 5-digit whole numbers in the entire number system.

Step 1
Four hundred fifty-six thousand five hundred eighty-eight can be written in the number form as 456588.

Step 2
According to the question, we have to subtract 456588 from 713252.

Step 3
\[
\begin{array}{cccccc}
7 & 1 & 3 & 2 & 5 & 2 \\
- & 4 & 5 & 6 & 5 & 8 & 8 \\
\hline
2 & 5 & 6 & 6 & 6 & 4 \\
\end{array}
\]

Step 4
Hence, four hundred fifty-six thousand five hundred eighty-eight less than 713252 is 256664.
B) 2405

Step 1
Forty-four can be written in the number form as 44.

Step 2
According to the question, we have to add 2361 and 44.

\[
\begin{align*}
2 & \quad 3 & \quad 6 & \quad 1 \\
+ & \quad 4 & \quad 4 \\
\hline
2 & \quad 4 & \quad 0 & \quad 5
\end{align*}
\]

Step 4
Hence, 2361 more than forty-four is \textbf{2405}.

\[
\text{(14) 100}
\]

Step 1
The right hand side of the given expression is one lakh = 100000.

Step 2
To find the number of thousands in this number, we will divide the number by 1000, which gives us

\[
\frac{100000}{1000} = 100.
\]

Step 3
Therefore, we find that there are \textbf{100} thousands in one lakh.
Step 1
In a number, the place value of a digit at tens place is 10 times its face value. For example, in number 23758, the face value of the digit at tens place is 5 and its place value is $5 \times 10 = 50$.

Step 2
Similarly, the place value of a digit at hundreds place is 100 times its face value. For example, in number 23758, the face value of the digit at hundreds place is 7 and its place value is $7 \times 100 = 700$.

Step 3
Now, look at the ones place. The place value of the digit at ones place will be 1 time its face value or same as its face value. For example, in number 23758, the face value of the digit at ones place is 8 and its place value is $8 \times 1 = 8$.

Step 4
Hence, the place value and the face value of a number is same at ones place.